

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	atcmd 0.1.0 documentation

atcmd

An AT (Hayes) command parser based on a subset of the ITU-T V.250 standard.

atcmd is supported on Python 2.7 and 3.4 or newer.

Contents:

	Installation

	Tutorial

	API

	Development

 Copyright 2015, Collab.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	atcmd 0.1.0 documentation

Installation

Stable Release

Download and install the latest stable release with pip:

pip install atcmd

Source

Alternatively you can clone the repository and install with pip:

pip install -e git+https://github.com/collab-project/atcmd.git#egg=atcmd

 Copyright 2015, Collab.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	atcmd 0.1.0 documentation

Tutorial

TODO

 Copyright 2015, Collab.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	atcmd 0.1.0 documentation

API

	
class atcmd.parser.ATParser

	An AT (Hayes command) parser based on a subset of the ITU-T V.250 standard.

Conformant with the subset of V.250 required for implementation of the
Bluetooth Headset and Handsfree Profiles, as per Bluetooth SIP
specifications. Also implements some V.250 features not required by
Bluetooth - such as chained commands.

Command handlers are registered with an ATParser instance.
These handlers are invoked when command lines are processed by the
ATParser.process() method.

The ATParser object accepts a new command line to parse
via its process() method. It breaks each command line into one or
more commands. Each command is parsed for name, type, and (optional)
arguments, and an appropriate external handler method is called through
the ATCommandHandler interface.

The command types are:

	Basic Command. For example "ATDT1234567890". Basic command names are
a single character (e.g. "D"), and everything following this character is
passed to the handler as a string argument (e.g. "T1234567890").

	Action Command. For example "AT+CIMI". The command name is "CIMI", and
there are no arguments for action commands.

	Read Command. For example "AT+VGM?". The command name is "VGM", and there
are no arguments for get commands.

	Set Command. For example "AT+VGM=14". The command name is "VGM", and
there is a single integer argument in this case. In the general case
there can be zero or more arguments (comma delimited) each of integer
or string type.

	Test Command. For example "AT+VGM=?". No arguments.

In V.250 the last four command types are known as Extended Commands, and
they are used heavily in Bluetooth for example.

Basic commands cannot be chained in this implementation. For Bluetooth
headset/handsfree use this is acceptable, because they only use the basic
commands ATA and ATD, which are not allowed to be chained. For general V.250
use we would need to improve this class to allow Basic command chaining -
however it’s tricky to get right because there is no delimiter for Basic
command chaining.

Extended commands can be chained. For example:

AT+VGM?;+VGM=14;+CIMI

This is equivalent to:

AT+VGM?
AT+VGM=14
AT+CIMI

Except that only one final result code is returned (although several
intermediate responses may be returned), and as soon as one command in the
chain fails the rest are abandoned.

Handlers are registered by there command name via register(Char c, ...) or
register(String s, ...). Handlers for basic command should be registered by
the basic command character, and handlers for Extended commands should be
registered by string.

References:

	ITU-T Recommendation V.250

	ETSI TS 127.007 (AT Command set for User Equipment, 3GPP TS 27.007)

	Bluetooth Headset Profile Spec (K6)

	Bluetooth Handsfree Profile Spec (HFP 1.5)

	
clean(data)

	Strip input of whitespace and force uppercase - except sections inside
quotes. Also fixes unmatched quotes (by appending a quote). Double
quotes ” are the only quotes allowed by V.250.

	Parameters:	data (str [https://docs.python.org/library/functions.html#str]) – Command string.

	Return type:	str [https://docs.python.org/library/functions.html#str]

	
findChar(ch, data, fromIndex)

	Find a character ch, ignoring quoted sections.

Return length of data if not found.

	Parameters:	
	ch (str [https://docs.python.org/library/functions.html#str]) –

	data (str [https://docs.python.org/library/functions.html#str]) –

	fromIndex (int [https://docs.python.org/library/functions.html#int]) –

	
findEndExtendedName(data, index)

	Return the index of the end of character after the last character in
the extended command name. Uses the V.250 spec for allowed command
names.

	Parameters:	
	data (str [https://docs.python.org/library/functions.html#str]) – The extended command name.

	index (int [https://docs.python.org/library/functions.html#int]) –

	Return type:	int [https://docs.python.org/library/functions.html#int]

	
generateArgs(data)

	Break an argument string into individual arguments (comma delimited).
Integer arguments are turned into integers. Otherwise a string is used.

	Parameters:	data (str [https://docs.python.org/library/functions.html#str]) – The argument string.

	Return type:	list [https://docs.python.org/library/functions.html#list]

	
isAtoZ(char)

	Indicates if char is a character between A and Z.

	Parameters:	char (str [https://docs.python.org/library/functions.html#str]) –

	Return type:	bool [https://docs.python.org/library/functions.html#bool]

	
process(data)

	Processes an incoming AT command line.

This method will invoke zero or one command handler methods for each
command in the command line.

	Parameters:	data (str [https://docs.python.org/library/functions.html#str]) – The AT input, without EOL delimiter (e.g. <CR>).

	Returns:	Result object for this command line. This can be
converted to a string response with
ATCommandResult.toString().

	Return type:	ATCommandResult

	
register(command, handler)

	Register a basic or extended command handler.

Basic command handlers are later called via their
handleBasicCommand(args) method.

Extended command handlers are later called via:

	handleActionCommand()

	handleGetCommand()

	handleSetCommand()

	handleTestCommand()

Only one method will be called for each command processed.

	Parameters:	
	command (str [https://docs.python.org/library/functions.html#str]) – Command name - a single character for basic commands or
multiple characters for extended commands.

	handler (ATCommandHandler) – Handler to register for the command.

	
class atcmd.parser.ATCommandHandler

	Bar.

	
handleActionCommand()

	Handle Actions command "AT+FOO".

Action commands are part of the Extended command syntax, and are
typically used to signal an action on "FOO".

:return The result of this command.

	
handleBasicCommand(arg)

	Handle Basic command "ATA".

These are single letter commands such as ATA and ATD. Anything following
the single letter command ('A' and 'D' respectively) will be
passed as 'arg'.

For example, 'ATDT1234' would result in the call
handleBasicCommand('T1234').

	Parameters:	arg (str [https://docs.python.org/library/functions.html#str]) – Everything following the basic command character.

	Returns:	The result of this command.

	
handleReadCommand()

	Handle Read command "AT+FOO?".

Read commands are part of the Extended command syntax, and are
typically used to read the value of "FOO".

:return The result of this command.

	
handleSetCommand(args)

	Handle Set command "AT+FOO=...".

Set commands are part of the Extended command syntax, and are
typically used to set the value of “FOO”. Multiple arguments can be
sent. For example:

AT+FOO=[<arg1>[,<arg2>[,...]]]

Each argument will be either numeric (int) or string.
handleSetCommand() is passed a generic Object[] array in which each
element will be an Integer (if it can be parsed with parseInt()) or
String.

Missing arguments ",," are set to empty strings.

	Parameters:	args (list [https://docs.python.org/library/functions.html#list]) – List of string and/or integers. There will always be at
least one element in this list.

	Returns:	The result of this command.

	
handleTestCommand()

	Handle Test command "AT+FOO=?".

Test commands are part of the Extended command syntax, and are typically
used to request an indication of the range of legal values that "FOO"
can take.

By default an OK result is returned to indicate that this command is at
least recognized.

	Returns:	The result of this command.

	
class atcmd.parser.ATCommandResult(resultCode=0, response=None)

	Foo.

	
ERROR = 1

	Error result code

	
ERROR_STRING = 'ERROR'

	Error response string

	
OK = 0

	Success result code

	
OK_STRING = 'OK'

	Success response string

	
UNSOLICITED = 2

	Unsolicited result code

	
addResponse(response)

	Add another line to the response.

	Parameters:	response (str [https://docs.python.org/library/functions.html#str]) –

	
addResult(result)

	Add the given result into this ATCommandResult instance.

Used to combine results from multiple commands in a single command line
(command chaining).

	Parameters:	result (ATCommandResult) – The ATCommandResult to add to this result.

	
appendWithCrlf(str1, str2)

	Append a string, joining with a double CRLF. Used to create multi-line
AT command replies.

	
getResultCode()

	

	Return type:	int [https://docs.python.org/library/functions.html#int]

	
toString()

	Generate the string response ready to send.

	Return type:	str [https://docs.python.org/library/functions.html#str]

 Copyright 2015, Collab.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	atcmd 0.1.0 documentation

Development

Tests

Make sure to install the development dependencies first:

pip install -r requirements-dev.txt

To run the tests with the default Python in your environment:

python -m unittest discover -v

Run tests with Tox [https://testrun.org/tox/latest/] on both Python 2.7 and 3.4:

tox

To create a coverage report:

coverage run --source=. --rcfile=.coveragerc -m unittest discover -v
coverage html

Open htmlcov/index.html in your browser to view the test report.

 Copyright 2015, Collab.

 Navigation

 	
 index

 	
 modules |

 	atcmd 0.1.0 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 atcmd	

 	
 	
 atcmd.parser	

 Copyright 2015, Collab.

 Navigation

 	
 index

 	
 modules |

 	atcmd 0.1.0 documentation

Index

 A
 | C
 | E
 | F
 | G
 | H
 | I
 | O
 | P
 | R
 | T
 | U

A

 	

 	addResponse() (atcmd.parser.ATCommandResult method)

 	addResult() (atcmd.parser.ATCommandResult method)

 	appendWithCrlf() (atcmd.parser.ATCommandResult method)

 	atcmd.parser (module)

 	

 	ATCommandHandler (class in atcmd.parser)

 	ATCommandResult (class in atcmd.parser)

 	ATParser (class in atcmd.parser)

C

 	

 	clean() (atcmd.parser.ATParser method)

E

 	

 	ERROR (atcmd.parser.ATCommandResult attribute)

 	

 	ERROR_STRING (atcmd.parser.ATCommandResult attribute)

F

 	

 	findChar() (atcmd.parser.ATParser method)

 	

 	findEndExtendedName() (atcmd.parser.ATParser method)

G

 	

 	generateArgs() (atcmd.parser.ATParser method)

 	

 	getResultCode() (atcmd.parser.ATCommandResult method)

H

 	

 	handleActionCommand() (atcmd.parser.ATCommandHandler method)

 	handleBasicCommand() (atcmd.parser.ATCommandHandler method)

 	handleReadCommand() (atcmd.parser.ATCommandHandler method)

 	

 	handleSetCommand() (atcmd.parser.ATCommandHandler method)

 	handleTestCommand() (atcmd.parser.ATCommandHandler method)

I

 	

 	isAtoZ() (atcmd.parser.ATParser method)

O

 	

 	OK (atcmd.parser.ATCommandResult attribute)

 	

 	OK_STRING (atcmd.parser.ATCommandResult attribute)

P

 	

 	process() (atcmd.parser.ATParser method)

R

 	

 	register() (atcmd.parser.ATParser method)

T

 	

 	toString() (atcmd.parser.ATCommandResult method)

U

 	

 	UNSOLICITED (atcmd.parser.ATCommandResult attribute)

 Copyright 2015, Collab.

 _static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		atcmd 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Collab.

_static/minus.png

_static/up.png

_static/down-pressed.png

_static/file.png

_static/down.png

_static/comment-close.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment.png

